Check for
Updates

Are Mobile Banking Apps Secure? What Can Be Improved?

Sen Chen
East China Normal University, China
ecnuchensen@gmail.com

Ting Su”
East China Normal University, China
Nanyang Technological University,

Lingling Fan
East China Normal University, China

Singapore
Guozhu Meng Minhui Xue Yang Liu
Chinese Academy of Sciences, China ~ Optus Macquarie University Cyber Nanyang Technological University,
Nanyang Technological University, Security Hub, Australia Singapore

Singapore

Lihua Xu*
East China Normal University, China
New York University Shanghai, China

ABSTRACT

Mobile banking apps, as one of the most contemporary FinTechs,
have been widely adopted by banking entities to provide instant
financial services. However, our recent work discovered thousands
of vulnerabilities in 693 banking apps, which indicates these apps
are not as secure as we expected. This motivates us to conduct this
study for understanding the current security status of them. First,
we take 6 months to track the reporting and patching procedure
of these vulnerabilities. Second, we audit 4 state-of-the-art vulner-
ability detection tools on those patched vulnerabilities. Third, we
discuss with 7 banking entities via in-person or online meetings
and conduct an online survey to gain more feedback from finan-
cial app developers. Through this study, we reveal that (1) people
may have inconsistent understandings of the vulnerabilities and
different criteria for rating severity; (2) state-of-the-art tools are not
effective in detecting vulnerabilities that the banking entities most
concern; and (3) more efforts should be endeavored in different as-
pects to secure banking apps. We believe our study can help bridge
the existing gaps, and further motivate different parties, including
banking entities, researchers and policy makers, to better tackle
security issues altogether.

CCS CONCEPTS

« Security and privacy — Software and application security;

KEYWORDS
Mobile Banking Apps, Vulnerability, Empirical Study

“Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5573-5/18/11...$15.00
https://doi.org/10.1145/3236024.3275523

797

ACM Reference Format:

Sen Chen, Ting Su, Lingling Fan, Guozhu Meng, Minhui Xue, Yang Liu, Lihua
Xu. 2018. Are Mobile Banking Apps Secure? What Can Be Improved?. In
Proceedings of the 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE °18),
November 4-9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3236024.3275523

1 INTRODUCTION

“There are two big opportunities in the future financial industry. One
is online banking, where all the financial institutions go online; the
other is internet finance, which is purely led by outsiders.” — Jack Ma.

A few years ago, Jack Ma argued the differences between Fin-
Tech (financial technology) and TechFin (technological finance).
FinTech [11] is known as a new industry where cutting edge tech-
nologies are applied in financial services. It is used to help compa-
nies manage the financial aspects of their businesses. TechFin [8],
on the other hand, is the third-party company that offers new tech-
nological solutions (e.g., security service). For example, as one of
the most popular contemporary FinTechs, mobile banking appli-
cations (apps), have been widely adopted by banking entities to
provide instant financial services (e.g., money transfer, peer-to-peer
payment). Undoubtedly, securing such FinTech as banking apps is
important and crucial to our interests.

However, as revealed by our recent large-scale study, these fi-
nancial services (e.g., banking apps) are not that secure in the real
world [20]. Specifically, we built an automated security analysis tool
AUSERA [20], and assessed 693 banking apps across over 80 coun-
tries. AUSERA unveiled 2,157 vulnerabilities, many of which could
cause serious sensitive data leakage (e.g., PIN code, user name).

To investigate such an alarming phenomenon, we take three
steps to investigate the current security status of banking apps.
First, we report 335 vulnerabilities to the 60 corresponding bank-
ing entities for confirmation, and track the patching process by
scanning the new app versions. However, the reporting process
is not as smooth as we expected. Due to lack of online contact
information or security supporting services, we only receive a few
valid responses. We keep tracking the email responses from August
1, 2017 to January 31, 2018 (6 months in total), but only receive
responses from 16.67% (10/60) banking entities.

https://doi.org/10.1145/3236024.3275523
https://doi.org/10.1145/3236024.3275523
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3236024.3275523&domain=pdf&date_stamp=2018-10-26

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

ﬂﬁﬂ

693 banking apps o Vul.
’' : if::ige Gap Longitudinal
Vul. Types AUSERA S investigation [RQ1: Reporting, patching efficiently? | analysis
................................ report RQ2: Existing tools effective? Lessons learned
RQ3: Gaps between different parties? a

@ -
Banking Entities Confirmation
o é o & Feedback

&ocscBank HSBC X»

S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu

Figure 1: Workflow of our study

During the 6 months, 30% (18/60) banking entities patched 41.27%
(52/126) of our reported vulnerabilities. On average, it takes 75 days
for a bank to patch one vulnerability, which is obviously far from
satisfactory. We find several reasons that account for such a long
patching time: (1) banking entities may not be aware of or em-
phasize specific vulnerabilities in practice; (2) they do not have
standard severity rating criteria to prioritize vulnerability patch-
ing; (3) they usually rely on penetration testing [16] to guarantee
security, which however may not be able to detect vulnerabilities
of their concerns.

Second, we explore whether the state-of-the-art security tools
can uncover vulnerabilities that the banking entities most concern.
To this end, we choose four representative tools often used by
developers in practice, i.e., QrH00360 [18], ANDROBUGS [1], and
QARK [17] and MobSF [15], to assess those banking apps that have
been patched according to our reports. Based on the analysis results,
we find two obvious weaknesses of these tools: (1) they output a
large number of false positives due to the syntax-based checking
strategies; (2) they may fail to handle different malicious scenarios
due to the same vulnerability (e.g., using invalid server verification).

Third, we set up several in-person or online meetings with the
banking entities from UK, India, China, Singapore, and HongKong,
e.g., HSBC, OCBC, DBS, and BHIM, to understand the policies they
follow. We surprisingly find banking entities may have inconsistent
understandings with academic researchers or even with themselves.
They emphasize more on data leakage-related and invalid authenti-
cation vulnerabilities than the other types. Furthermore, we con-
duct an online survey for app developers to familiarize with their
security considerations and vulnerability understandings during
development. We find developers may choose insecure APIs or im-
plementation methods due to their preference or expertise. Based
on the experience, we distill several lessons and recommendations
for different parties, including banking entities, researchers and
policy makers, to better secure banking apps.

In summary, we make the following contributions:

o We conduct the first study to track and investigate the vulnerabil-
ity patching process of mobile banking apps, and communicate
with banking entities on the discovered vulnerabilities by our
security risk assessment tool AUSERA.

e We unveil several problems in industrial practice, and also eval-
uate the abilities of the state-of-the-art vulnerability detection
tools on the patched vulnerabilities that the banking entities most
concern.

o We distill several lessons and recommendations from our investi-
gation, and show the gaps that banking entities, researchers and
policy makers that need to close.

798

We believe our study can provide useful insights for different
parties to secure mobile banking apps. We here also emphasize
that our study has received positive feedback from the banking
entities in question and already driven several improvements in
their policies, as well as our tool, AUSERA, has done its upmost for
boosting their products’ quality.

2 STUDY DESIGN

In this section, we first briefly introduce the workflow of our study
and summarize three research questions we aim to answer in this
paper. Next, we introduce the procedure of vulnerability collection.
Last, we give a real vulnerability case to show its damage and briefly
illustrate how AUSERA can detect it.

2.1 Workflow of Our Study

As shown in Figure 1, our study contains 4 phases:

(i) Vulnerability collection. We apply our automated security
risk assessment tool, AUSERA, on 693 mobile banking apps to col-
lect vulnerabilities. Specifically, AUSERA employs two strategies to
detect vulnerabilities in mobile banking apps: a forward data flow
analysis to determine whether there exists sensitive data flowing
into insecure sinks (e.g., sendTextMessage); a backward control
flow analysis to check whether the vulnerable API invocation pat-
terns in communication infrastructure are truly reachable (e.g.,
invalid server authentication). After assessing all banking apps, we
manually confirm vulnerabilities by inspecting the corresponding
vulnerable code. We adopt several reverse-engineering and analysis
tools (e.g., APKTOOL [5], JADX-GUI [9]) to ease our analysis. The
manual analysis takes us about one and half a month, including the
demonstration of how to exploit several severe vulnerabilities to
get users’ sensitive data.

(ii) Progress tracking. We track the procedure of vulnerability
reporting and patching via emails and in-person meetings. Specifi-
cally, we send the detected vulnerabilities, potential damages and
attacks to the banking entities, and set up in-person meetings if
necessary. Further, we conduct an online survey to collect feedback
from app developers about their security consideration during de-
velopment and understanding of vulnerabilities. To achieve this, we
crawled the email addresses of over 2.5k Android app developers
and invite them to participate the survey. All of them have the
experience of developing apps in the “FIANANCE” category on
Google Play. We have received 20 responses in total until now.
(iii) Gap investigation. We compile the feedbacks from banking
entities and industrial developers, observe the problems during the
vulnerability reporting and patching procedure, and investigate the
security gaps between different parties.

Are Mobile Banking Apps Secure? What Can Be Improved?

1 // Get data from EditTexts

2 public String getRegisterSms() {

3 StringBuilder m = new StringBuilder(“REG”);
4 m.append(g

5 m.apperid(getFirstName()\+ “/”)

6 m.append(getLastName() “/”)

7 m.append(e 3

8 return m. tOStr‘l g User Input

!

10 // Send the data via SMS

11 public void execute() {
12

sendSmsMessage|(getRegisterSms()|);
13 }

14 i
private void sendSmsMessage(String

// SMS sending code
15

16 this.smsManager.setMessage(lmessage)

17 this.smsManager.setDestinationAddcess(“..”);
18 SmsHandler.builder().activity(this.activity);
19 smsManager(this.smsManager) .build() ;
20 }

Figure 2: Pseudo code of banking app that leaks credentials

(iv) Longitudinal analysis. We summarize the lessons learned
from our study. We also provide some recommendations to banking
entities, academic researchers and policy makers on how to shorten
the vulnerability patching time and bridge existing gaps.

2.2 Research Questions

In this paper, we aim to answer the following research questions
by tracking the procedure of vulnerability reporting and patching.

e RQ1: If some vulnerabilities were found in the mobile banking
apps, can we efficiently reach the corresponding banking entities?
Can the vulnerabilities be efficiently patched?

e RQ2: Are the state-of-the-art security analysis tool effective for
detecting the vulnerabilities that the banking entities concern?

e RQ3: What are the differences of understanding vulnerabilities
and rating the severity between different parties, e.g., banking
entities, third-party security companies and researchers?

2.3 Vulnerability Collection

We collected 693 mobile banking apps from Google Play, which
cover more than 80 developed and developing countries across
5 continents. We then apply AUSERA to identify vulnerabilities.
AUSERA has integrated 16 vulnerability types [20] in total. These
types are collected from prior research [23], best industrial practice
guidelines (e.g., Google Android Best Practice [13] and OWASP),
online secure reports, and security weakness and vulnerability
databases (e.g., CWE, CVE). Finally, we collected 2,157 vulnerabil-
ities in total, 592 of which are related with private data leakage
(affecting 470 banking apps), such as Preference Leakage, Logging
Leakage, SMS Leakage, and SD Card Leakage. Additionally, invalid
authentication is also more likely to be exploited (affecting 222
apps), but always gains little attention from app developers.

2.4 A Real Vulnerable Case

To better understand what a data-related vulnerability is and how
AUSERA detects it, we give a real vulnerable case. The case is taken
from the app of a famous banking entity in Southeast Asia with
10M-50M downloads on Google Play. It discloses users’ credentials
and may cause severe financial loss. Specifically, after users reg-
ister by entering their names, passwords and addresses, the app

799

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

Table 1: Tracking information of 7 banking entities we have
successfully got in touch with till now

B:‘;)k;:g #Email DE:;::;))“ Inm-:):tri;ogn Country Download
HSBC 20 30 02/17/2018 UK & China 5M-10M
OCBC 7 45 01/12/2018 Singapore 5M-10M

DBS 14 35 01/15/2018 Singapore 5M-10M
MyAadhar 15 42 11/03/2017 India 50M-100M
BHIM 18 42 11/03/2017 India 10M-50M
ICICI Netbanking 20 47 11/19/2017 India 100M-500M
ICICI Pockets 20 47 11/19/2017 India 50M-100M

packages users’ credentials into an SMS message and sends them to
the bank server via ServiceManager on Android. It is extremely
astonishing that the SMS message with credential data is also stored
into the outbox. Assume the user device runs a daemon service of
a malicious app at the backend, which could extract the credentials
inside the outbox and thereby send out to its remote server con-
trolled by a cybercriminal. Consequently, the cybercriminal is able
to use the stolen credentials to access the victim’s account.

Figure 2 presents the pseudo code of this vulnerability. The confi-
dential data is extracted from the EditTexts (Lines 4-7); the method
execute() is called to send a message (Line 12) containing the ex-
tracted confidential data, and SmsManager sends the credentials
(Line 19). To detect this leakage, AUSERA first tags sensitive data
by applying NLP techniques, and then uses control- and data-flow
analysis to track the data flow (the red arrows in Figure 2 indicate
the flow of the user input data) until it sends out the data. AUSERA
extracts the leakage path of user inputs and validates the app does
send sensitive user data via SMS.

3 SECURITY STATUS QUO
3.1 Vulnerability Reporting

When reporting vulnerabilities, we find many banking entities do
not provide contact information or security supporting service on
their official websites. As a result, we have to contact them by
using the emails of app developers found on Google Play. This
phenomenon indicates that banking entities have not pay enough
attention to the security of their apps. They do not provide an
efficient channel or a bounty program to receive security feedback
from third-parties (e.g., users, researchers).

We contacted 60 banking entities by sending the corresponding
vulnerabilities. However, we only received responses, including
114 emails in total, from 10 banking entities. Some banking entities
gave us positive responses, which confirmed the reported vulnera-
bilities. They would like to cooperate with us to patch the reported
vulnerabilities in their new versions. However, as shown in Table 1,
7 out of 10 banking entities gave us real replies, while the other 3
only gave auto-replies, saying that:

e “We proceeded to forward your request to the competent office; in
case the proposal will be positively evaluated, you will be contacted
at the addresses that you kindly provided us.”

e “Your ticket number is 553331, Our Support team are currently
reviewing your concern. Please expect a response from us.”

We explained the reported vulnerabilities in detail to the 7 bank-
ing entities via email, and sent 16 emails on average to each of them.

But this communication method is proved to be time-consuming

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Table 2: Tracking the status of vulnerability patching

Types #Apps #PZ;,C::d #Vuls #P‘a/:lcll;ed Paltlc::ieng #‘ll\luel\;v
Actively responded 10 7 56 24 43% 0
Silently patched 11 11 70 28 40% 5
Total 21 18 126 52 41.27% 5

and ineffective. Therefore, we decided to set up in-person or online
meetings with these banking entities. We successfully set up the
meetings with 7 banking entities. In each meeting, the number of
participants is more than 10, and the duration is more than 2 hours.
At least three people from our research team participated in the
meeting. We extensively discussed the reported vulnerabilities in
these banking apps, and exchanged our idea on how to ensure app
security and other related topics. In particular, we visited some
banking entities from Singapore and China in person. More results
are discussed in Section 4.

3.2 Vulnerability Patching

As shown in Table 2, we find that 21 out of 60 banking entities
have confirmed the reported vulnerabilities in two different ways.
10 banking entities confirm the vulnerabilities by emailing us the
positive feedback. Specifically, 7 of 10 have fixed the vulnerabilities,
and the rest 3 claim they will patch the vulnerabilities soon in the
next release versions but need our assistance. However, another
11 banking entities confirm the vulnerabilities by silent patching
— we haven’t received any responses from them, but they indeed
patch the corresponding vulnerabilities in their new versions. To
further confirm the patching status, we recheck the latest release
versions of these 60 banking apps, and find 18 banking entities have
already patched 52 vulnerabilities in their apps according to our
vulnerability reports.

There are 126 vulnerabilities detected in the 21 banking apps.
However, the patching rate of the reported vulnerabilities is low
either for banking entities with “Actively responded” (43%) or with
“Silently patched” (40%). We explore the reasons behind in Sec-
tion 4. On the other hand, during the patching procedure, 5 new
vulnerabilities are introduced in new versions. It indicates banking
entities do not have effective security assessment mechanism for
their apps. For example, the banking app (Cx) has 6 vulnerabilities.
In its updated version, two reported vulnerabilities (i.e., Only Uses
HTTP Protocol and Logging Leakage) are patched by employing
SSL/TLS over HTTPS communication. However, new vulnerabilities
are introduced, i.e., the app does not verify the identity of bank
server when using SSL/TLS.

3.3 Auditing Vulnerability Detection Tools

According to the discussion with banking entities, we find the top
priority of banking entities is to patch vulnerabilities related to data
leakage and invalid authentication. Among the 52 patched cases
from 18 banking apps, 29 cases are relevant to data leakage, and
6 cases are using invalid authentication. Banking entities patched
67.31% of these two types of vulnerabilities. Based on the observa-
tion, we intend to investigate whether the state-of-the-art security
tools can effectively detect such vulnerabilities.

We apply 4 state-of-the-art industrial and academic tools, Q1-
H00360, ANDROBUGS, QARK and MoBSF on the 18 patched bank-
ing apps to investigate their abilities of detecting data leakage-
related and invalid authentication vulnerabilities. QrH00360 and

800

S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu

ANDROBUGS are the representative tools in industry and academy,
respectively. QARK and MoBSF are both open-source tools and
often used in practice according to our survey. In Table 3, we show
7 different types of data leakage-related vulnerabilities (e.g., Prefer-
ence Leakage, SMS Leakge, and Screenshot) and invalid authentica-
tion. We tick the types of vulnerabilities these tools can detect. We
can see all tools can handle invalid authentication via syntax- or
pattern-based checking methods, but we find they can be negatively
affected by the existence of dead code (incurring false positives).

On the other hand, these tools cannot detect most of data leakage-
related vulnerabilities. Only MoBSF and ANDROBUGS can detect
sensitive data disclosure through logging, encryption key hard-code
and screenshot. MoBSF achieves this by simply matching such APIs
asLog.e(),Log.d() and Log. v (). However, it may incur a number
of false positives, since it is very common for developers to output
some insensitive information of their apps via Log.d() to ease
debugging. We find MoBSF reports 167 logging-related cases for the
banking app GCash, 165 of which are all false positives. Meanwhile,
it reveals 17 false positives related to encryption key hard-coded,
but they only indicate which Java files are relevant to encryption
functions, such as Cipher objects. Actually, they use “Files MAY
contain hard-coded keys.” as a declaration for their detected security
cases, which is not actionable for patching. Moreover, we find these
tools cannot detect all the vulnerabilities that they declare to be
able to detect. For example, QARK and QrH00360 cannot detect all
the 6 vulnerabilities of invalid authentication.

QARK is often used by developers or third-party security compa-
nies to guarantee app security according to our online questionnaire.
However, as shown in Table 3, it cannot detect data leakage-related
vulnerabilities that banking entities most concern. In addition, de-
velopers also use the tools like XPosED [19] and FriDA [12] to assist
their security assessment for apps. XposEeD, a hook framework, can
change the original behaviors of the system and apps. FRIDA, a dy-
namic instrumentation toolkit, can inject scripts to explore native
apps on Android. Strikingly, several developers rely on functional
testing tool like JUNIT to guarantee app security.

4 LESSONS LEARNED

This section summarizes the lessons learned from our study, includ-
ing 114 email exchanges, 7 in-person meetings, and 20 valid online
questionnaires. It helps us understand the gaps between different
parties, including banking entities, researchers, and third-party
security companies.

4.1 Different Understanding of Vulnerabilities

Understanding of reported vulnerabilities between banking
entities and researchers. From the view of academic researchers,
we usually recommend all of the reported vulnerabilities should be
patched as soon as possible. However, from the view of industrial
practice, banking entities think that only parts of them are vulnera-
ble and should be patched. We provide three cases to demonstrate
this divergence as follows.

e Hash functions MD5 and SHAT have been proved insecure many
years ago [24]. However, they are still widely used in app develop-
ment. The online questionnaire unveils that 60% developers are
still using MD5 or SHA1 for cryptographic use (e.g., randomization
and integrity validation), although they have been aware of the

Are Mobile Banking Apps Secure? What Can Be Improved?

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

Table 3: Patched vulnerability types that banking entities concern

Concerned Preference Logging SD Card WebView SMS Encryption Key Screenshot Inva.lid)
Leakage Leakage Leakage Leakage Leakage Hard-coded Authentication
#Patched Vuls 4 7 4 3 2 2 7 6
Qiho0360 [18] v
AndroBugs [1] v v
QARK [17] - - - - v
MobSF [15] - ' - ' - v

weakness. In addition, some banking entities don’t care whether
the imported third-party libraries use the message digest even if
they are aware of it. “In case the instances (i.e., vulnerabilities)
are in the third party libraries we do not consider such instances
as these do not fall within the scope of the assessments.” as the
team from BHIM and MyAadhar said in the email.
o Logging sensitive data is very common in industry. Some sen-
sitive data is leaked as debugging outputs, such as payee name,
transfer money, and transfer time. According to the results from
online questionnaires, we find there are still 50% of developers
logging sensitive data in their delivered apps. Some banking enti-
ties (e.g., ICICI Netbanking and Pockets) assume “if the minimum
SDK is 16, no application can read the logs of other applications
even installed on the same device, which is a secure environ-
ment.” But this is not always true, especially when the devices
have been rooted or under privilege escalation attacks. The ap-
propriate mitigation is to remove these debugging outputs before
release, which has been widely acknowledged in academia [23].
The last one is invalid authentication for banking apps. Some
banking entities (e.g., HSBC China) used two types of authenti-
cation before login and after login, respectively. The problem-
atic authentication phase is before login: before logging in the
banking app, they use an invalid authentication to set up the
communication between the app and remote server. That is, they
do nothing in the function of checkServerTrusted on invalid
certificates, it is at risk for users’ data and behaviors.

Understanding of same vulnerabilities between different bank-

ing entities. Actually, as for a certain vulnerability, different bank-
ing entities may hold different understandings. Here, we give a
real case to explain the phenomenon. We regard screenshot as
a vulnerable behavior for banking apps, because malicious apps
can extract users’ credentials and other sensitive data (e.g., trans-
fer data) via screenshots. The developers in OCBC from Singa-
pore thought “screenshot is a basic function for banking users,
since users may want to share information to their friends”. How-
ever, the developers in BHIM from India confirmed the damage
of screenshots although they don’t know how to patch it at first.
The results from online questionnaire show that 75% developers
think allowing screenshot in a security-related app is vulnerable,
however, the rest of developers hold the opposite opinion. We
don’t think that screenshots of all app pages have damage, but it
is at least vulnerable to sensitive pages (e.g., pages of login, regis-
tration and transfer). To avoid this screenshot attack, developers
should set WindowManger . LayoutParams. FLAG_SECURE by calling
getWindow()#setFlags in the page that should be protected.

4.2 Severity Criteria and Concerns

Severity criteria of reported vulnerabilities. Due to high vul-
nerability patching cost (time and human efforts), banking entities

801

prefer to patch the vulnerabilities of high risks. Specifically, OCBC
and DBS rely on CVSS [7] to determine the severity of found vul-
nerabilities, while the other 5 banking entities check whether the
vulnerabilities belong to sensitive data leakage. If so, such vulnera-
bilities are considered of high risks. But the standard of sensitive
data leakage is too coarse-grained since the definition of data is
unclear, and the criterion CVSS is not that complete and perfect.
Actually, there is also no standard criteria for vulnerabilities in
academia. But researchers prefer security metrics, such as the sever-
ity of damage, the cost of exploits, and CVEs, to decide the severity
of vulnerabilities.

Concerns of banking entities about vulnerabilities. Banking
entities do concern about reported security issues: “HSBC takes
the security of its customers, systems and data very seriously and
we are always interested in any security issues raised by users and
researchers of our web sites and welcome any relevant information
that you may have.”, said by HSBC security team from the UK in
the email. According to the patching results, received emails, and
in-person meeting, we find all banking entities concern more about
sensitive data leakage and invalid authentication vulnerabilities,
such as SMS and Preference leakage.

4.3 Collaboration and Responsibility

Collaboration mechanism between researchers, banking en-
tities and third-party security companies. When we first re-
ported the vulnerabilities to banking entities, their developers can-
not patch them directly due to lack of enough security knowledge.
Banking entities handed them over to third-party companies for
seeking further confirmations and supports. It was stated that the
third-party companies used penetration testing (e.g., QARK [17],
FripA [12] and DRrozER [10]) to check the banking apps before
delivery. However, penetration testing cannot fully guarantee the
security of apps since it relies on manual analysis. The whole pro-
cess of security check is transparent to banking entities, and that
is why they have to resort to third-party companies for confirma-
tion of newly discovered vulnerabilities. Actually, the vulnerability
patching time includes the communication time and actual fixing
time, which explains the long patching duration. Therefore, the col-
laboration between researchers, banking entities and third-parity
companies is not very efficient.

Who should be responsible? In some cases, banking entities re-
fused to take the responsibility of introducing vulnerabilities. One
real case is as follows. One banking app stores user name and pass-
word to an XML file via SharedPreference, an internal storage. If a
malicious app is installed on the same device, users’ sensitive data
can be stolen easily. However, some banking entities think users
should be responsible for such risk, since they should not download
and install malicious apps on their devices for whatever reasons.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

In other cases, the banking entities think the third-party security
companies should be responsible. For example, the developers use
setSeed when implementing SecureRandom, which is vulnerable
due to lack of randomness. They require third-party companies or
their own security team to add the corresponding detection methods
when inspecting newer versions. Additionally, in some cases, they
only recognize the severity after we report the vulnerabilities (e.g.,
invalid authentication before login). Under this situation, it is the
banking entity itself that should be responsible for the vulnerability.

4.4 Recommendations

What can be improved for banking entities?

e Banking entities should provide various channels to respond to
vulnerabilities, especially for the researchers who are focusing
on the relevant research topics. For example, they can provide
the contact information of security supporting service on the
prominent position of their company websites.

o App packing [25] is one of the effective protection methods for
banking apps, such as APKPROTECT [4], BANGCLE [6], and IJ1-
AMI [14]. It can significantly complement penetration testing.
Even if one app has vulnerabilities, app packing can increase the
difficulty of exploitation.

e Banking entities should pay more attention to security issues
rather than only functional bugs [21, 22]. It is better to build a
security team by themselves or work with third-party security
companies, e.g., Alibaba Juanquan [3] and Ijiami [14].

o Banking entities should carefully choose third-party libraries, and
evaluate the risk imposed by the incorporation of these libraries.

What can be improved for academic researchers?

o Researchers should pay more attention on the research topics of
Android applications which have practical scenarios in industry.

e When reporting vulnerabilities, researchers are advised to pro-
vide more information such as the potential damage, exploitation
methods, and patching methods. It makes banking entities in-
stantly grasp these vulnerabilities so as to take duly measures.

e According to our online questionnaires, we summarize the vul-
nerability types that should receive more attention. The results
show that 78% of developers concern more about sensitive data-
related issues (e.g., privacy of users, info leaks, database), which
need further study and exploration.

What can be improved for policy makers?

o Explicitly designating the responsibility of each party can effec-
tively improve vulnerability patching and security awareness.
GDPR [2] (General Data Protection Regulation EU) already made
the first step.

o The policy makers should help standardize the third-party re-
porting channels.

5 CONCLUDING REMARKS
5.1 Impact of Our Study

The security status quo of the 7 banking entities that closely com-
municated with us has been changing in different aspects. (1) They
have accepted our reported vulnerabilities and actively collaborated
with us to improve the app security. In addition, the core developers
explored and learned the techniques used in AUSERA from us. (2)
They asked us for help to conduct an automated security assess-
ment for their new versions with AUSERA before release. (3) They

802

S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu

further explored penetration testing from third-party companies
to shorten the patching duration, such as the OCBC team. (4) They
took charge of the outdated versions in the wild by forcing updates
to reduce the impact of our reported vulnerabilities. (5) Some secure
hints are pushed to mobile users frequently by banking entities,
such as the banking app from DBS.

5.2 Conclusion

This paper represents the first study to track the reporting and
patching process of vulnerabilities in mobile banking apps, which
lasts more than 6 months. We received numerous positive feed-
back from banking entities on the reported vulnerabilities. We also
audited the state-of-the-art vulnerability detection tools for those
confirmed vulnerabilities. Finally, we provided many practical rec-
ommendations for different parties. In all, our study provides useful
insights to bridge the security gaps, and also helps banking entities
and third-party companies to better tackle security issues.

ACKNOWLEDGMENTS

We appreciate the reviewers’ constructive feedback. This work is
partially supported by NSFC Grant 61502170, the Science and Tech-
nology Commission of Shanghai Municipality Grant 18511103802,
NTU Research Grant NGF-2017-03-033 and NRF Grant CRDCG2017-
S04. Sen Chen is partly supported by ECNU Project of Funding
Overseas Short-term Studies.

REFERENCES

[1] 2015.
[2] 2016.
[3] 2018.
2018.

AndroBugs. https://github.com/AndroBugs/

General Data Protection Regulation. https://www.eugdpr.org/

Alibaba Juanquan. https://angel.co/projects/112838-alibaba-juanquan
APKProtect. https://github.com/CvvT/ApkProtect

[5] 2018. Apktool. https://ibotpeaches.github.io/Apktool/

2018. Bangcle Security (bangbang). https://www.crunchbase.com/organization/
bangbang-security

] 2018. Common Vulnerability Scoring System. https://www.first.org/cvss/

8] 2018. Daily Fintech: From Fintech to TechFin. https://dailyfintech.com/2018/03/
16/from-fintech-to-techfin-three- trends-that-banks-will-be-worried-about/
2018. Dex to Java decompiler. https://github.com/skylot/jadx

2018. Drozer. https://github.com/mwrlabs/drozer

2018. Financial Technology. https://en.wikipedia.org/wiki/Financial_technology
2018. Frida. https://github.com/frida

2018. Google Best Practices for Security. https://developer.android.com/training/
best-security.html

2018. Tjiami. http://www.ijiami.cn/enindex

2018. MobSF. https://github.com/MobSF/Mobile-Security-Framework-MobSF
2018. Penetration Test. https://en.wikipedia.org/wiki/Penetration_test

2018. QARK. https://github.com/linkedin/qark

2018. Qiho0360 (Appscan). http://appscan.360.cn/

2018. Xposed. http://repo.xposed.info/module/de.robv.android.xposed.installer
Sen Chen, Guozhu Meng, Ting Su, Lingling Fan, Yinxing Xue, Yang Liu, Lihua
Xu, Minhui Xue, Bo Li, and Shuang Hao. 2018. AUSERA: Large-Scale Auto-
mated Security Risk Assessment of Global Mobile Banking Apps. arXiv preprint
arXiv:1805.05236 (2018).

Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, and Geguang
Pu. 2018. Efficiently manifesting asynchronous programming errors in Android
apps. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018. 486-497.
Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions
in Android apps. In Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. 408-419.
Bradley Reaves, Nolen Scaife, Adam M Bates, Patrick Traynor, and Kevin RB
Butler. 2015. Mo (bile) Money, Mo (bile) Problems: Analysis of Branchless Banking
Applications in the Developing World. In USENIX Security. 17-32.

Xiaoyun Wang and Hongbo Yu. 2005. How to break MD5 and other hash functions.
In Eurocrypt, Vol. 3494. Springer, 19-35.

Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive
unpacking of Android apps. In Software Engineering (ICSE), 2017 IEEE/ACM 39th
International Conference on. IEEE, 358-369.

[24

[25

https://github.com/AndroBugs/
https://www.eugdpr.org/
https://angel.co/projects/112838-alibaba-juanquan
https://github.com/CvvT/ApkProtect
https://ibotpeaches.github.io/Apktool/
https://www.crunchbase.com/organization/ bangbang- security
https://www.crunchbase.com/organization/ bangbang- security
https://www.first.org/cvss/
https://dailyfintech.com/2018/03/16/from-fintech-to-techfin-three-trends-that-banks-will-be-worried-about/
https://dailyfintech.com/2018/03/16/from-fintech-to-techfin-three-trends-that-banks-will-be-worried-about/
https://github.com/skylot/jadx
https://github.com/mwrlabs/drozer
https://en.wikipedia.org/wiki/Financial_technology
https://github.com/frida
https://developer.android.com/training/best-security.html
https://developer.android.com/training/best-security.html
http://www.ijiami.cn/enindex
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://en.wikipedia.org/wiki/Penetration_test
https://github.com/linkedin/qark
http://appscan.360.cn/
http://repo.xposed.info/module/de.robv.android.xposed.installer

	Abstract
	1 Introduction
	2 Study Design
	2.1 Workflow of Our Study
	2.2 Research Questions
	2.3 Vulnerability Collection
	2.4 A Real Vulnerable Case

	3 Security Status Quo
	3.1 Vulnerability Reporting
	3.2 Vulnerability Patching
	3.3 Auditing Vulnerability Detection Tools

	4 Lessons Learned
	4.1 Different Understanding of Vulnerabilities
	4.2 Severity Criteria and Concerns
	4.3 Collaboration and Responsibility
	4.4 Recommendations

	5 Concluding Remarks
	5.1 Impact of Our Study
	5.2 Conclusion

	Acknowledgments
	References

